As reported by China Federation

4.2. Model formulation
The basic mathematical formulation of the Mixed Integer Linear Programming model is presented in this ARN-509 section. The adaption needed for other scenarios are presented in the next section (Fig. 4).
Fig. 4. Indices used in the network model.Figure optionsDownload full-size imageDownload as PowerPoint slide
Product index.Productsp=Productsp=Mix MSW1Mixed hard plastic7Mix plastic waste2End PP8PP3End PE9PE4End PET10PET5End Film11Film6End Mixed hard plastic12Full-size tableTable optionsView in workspaceDownload as CSV
The MILP problem is classes formulated as follows:
Objective: Minimize total costsMinimize∑i=1I∑j=1j∑p=1PXjpi(cij+cjp)+∑j=1J∑k=1K∑p=1PXjkp(cjk+ckp)+∑k=1K∑l=1lo∑p=1PXlpk(ckl+clp)+∑n=n0+1N∑l=l0+1L∑p=1PXlpn(cnl+clp)+∑l=l0+1L∑m=1M∑p=1PXmplclm+∑k=1K∑n=1n0∑p=1PXnpkckn+∑l=1l0∑n=1n0∑p=1PXnplcln+∑n=1n0∑n′=n0+1N∑p=1PXn′pncnn′+∑n=n0+1N∑m=1M∑p=1PXmpncnm+∑p=1P∑i=1Icip+∑l1=1l0∑l2=1l0ETl1l2ecte+∑l1=l0+1L∑l2=l0+1LETl1l2cctc︸Emission Trading Costs