# Convert Your Own Vinblastine In To A Absolute Goldmine

If a twice continuously differentiable function u : �� �� satisfies the inequality|utt(x,t)?c2uxx(x,t)|�ܦ�(x,t)(6)for all x, t , then there exists an answer u0 : �� �� with the wave equation selleck inhibitor (two) which satisfies|u(x,t)?u0(x,t)|?��14c2|��0x?ct��0x+ct��(��+��2,��?��2c)d��d��|(7)for all x, t . Proof ��Let us define a function v : �� �� byv(w,z):=u(w+z2,w?z2c).(8)If we set w = selleck products x + ct and z = x ? ct, then we've u(x, t) = v(w, z) andut(x,t)=vw(w,z)?w?t+vz(w,z)?z?t=cvw(w,z)?cvz(w,z),utt(x,t)??=cvww(w,z)?w?t+cvwz(w,z)?z?t??cvzw(w,z)?w?t?cvzz(w,z)?z?t=c2vww(w,z)?2c2vwz(w,z)+c2vzz(w,z),ux(x,t)=vw(w,z)?w?x+vz(w,z)?z?x=vw(w,z)+vz(w,z),uxx(x,t)=vww(w,z)?w?x+vwz(w,z)?z?x?+vzw(w,z)?w?x+vzz(w,z)?z?x=vww(w,z)+2vwz(w,z)+vzz(w,z),(9)for all x, t . Consequently, we haveutt(x,t)?c2uxx(x,t)=?4c2vwz(w,z),(ten)for any x, t .

Consequently, it follows from inequality (six) that|vwz(w,z)|��14c2��(w+z2,w?z2c),(eleven)for any w, z .Consequently, we get?14c2��0z��0w��(��+��2,��?��2c)d��d��??�ܡ�0z��0wvwz(��,��)d��d��??��14c2��0z��0w��(��+��2,��?��2c)d��d��(12)orVinblastine equivalently|v(w,z)?v(w,0)?v(0,z)+v(0,0)|?��14c2|��0z��0w��(��+��2,��?��2c)d��d��|,(13)for all w, z .On account of (8), we getv(w,z)=u(w+z2,w?z2c),??v(w,0)=u(w2,w2c),v(0,z)=u(z2,?z2c),??v(0,0)=u(0,0).(14)Consequently, it follows from (13) as well as final equalities that|u(w+z2,w?z2c)?u(w2,w2c)?u(z2,?z2c)+u(0,0)|?��14c2|��0z��0w��(��+��2,��?��2c)d��d��|,(15)for all w, z .If we set w = x + ct and z = x ? ct while in the last inequality, then we obtain|u(x,t)?u0(x,t)|?��14c2|��0x?ct��0x+ct��(��+��2,��?��2c)d��d��|,(sixteen)for all x, t , where we setu0(x,t):=u(x2+c2t,x2c+t2)??+u(x2?c2t,?x2c+t2)?u(0,0).

(17)By some tedious calculations, we get??tu0(x,t)?=c2ux(x2+ct2,x2c+t2)+12ut(x2+ct2,x2c+t2)????c2ux(x2?ct2,?x2c+t2)+12ut(x2?ct2,?x2c+t2),?2?t2u0(x,t)?=c24uxx(x2+ct2,x2c+t2)+c2uxt(x2+ct2,x2c+t2)???+14utt(x2+ct2,x2c+t2)+c24uxx(x2?ct2,?x2c+t2)????c2uxt(x2?ct2,?x2c+t2)+14utt(x2?ct2,?x2c+t2),??xu0(x,t)?=12ux(x2+ct2,x2c+t2)+12cut(x2+ct2,x2c+t2)???+12ux(x2?ct2,?x2c+t2)?12cut(x2?ct2,?x2c+t2),?two?x2u0(x,t)?=14uxx(x2+ct2,x2c+t2)+12cuxt(x2+ct2,x2c+t2)??+14c2utt(x2+ct2,x2c+t2)+14uxx(x2?ct2,?x2c+t2)???12cuxt(x2?ct2,?x2c+t2)+14c2utt(x2?ct2,?x2c+t2),(18)for all x, t .